Database models
Database model
Various techniques are used to model data structure. Most database systems are built around one particular data model, although it is increasingly common for products to offer support for more than one model. For any one logical model various physical implementations may be possible, and most products will offer the user some level of control in tuning the physical implementation, since the choices that are made have a significant effect on performance. An example of this is the relational model: all serious implementations of the relational model allow the creation of indexes which provide fast access to rows in a table if the values of certain columns are known.
A data model is not just a way of structuring data: it also defines a set of operations that can be performed on the data. The relational model, for example, defines operations such as select, project, and join. Although these operations may not be explicit in a particular query language, they provide the foundation on which a query language is built.
Flat model
This may not strictly qualify as a data model, as defined above. The flat (or table) model consists of a single, two-dimensional array of data elements, where all members of a given column are assumed to be similar values, and all members of a row are assumed to be related to one another. For instance, columns for name and password that might be used as a part of a system security database. Each row would have the specific password associated with an individual user. Columns of the table often have a type associated with them, defining them as character data, date or time information, integers, or floating point numbers. This model is, incidentally, a basis of the spreadsheet.
Hierarchical model
In a hierarchical model, data is organized into a tree-like structure, implying a single upward link in each record to describe the nesting, and a sort field to keep the records in a particular order in each same-level list. Hierarchical structures were widely used in the early mainframe database management systems, such as the Information Management System (IMS) by IBM, and now describe the structure of XML documents. This structure allows one 1:N relationship between two types of data. This structure is very efficient to describe many relationships in the real world; recipes, table of contents, ordering of paragraphs/verses, any nested and sorted information. However, the hierarchical structure is inefficient for certain database operations when a full path (as opposed to upward link and sort field) is not also included for each record.
Network model
The network model (defined by the CODASYL specification) organizes data using two fundamental constructs, called records and sets. Records contain fields (which may be organized hierarchically, as in the programming language COBOL). Sets (not to be confused with mathematical sets) define one-to-many relationships between records: one owner, many members. A record may be an owner in any number of sets, and a member in any number of sets.
The operations of the network model are navigational in style: a program maintains a current position, and navigates from one record to another by following the relationships in which the record participates. Records can also be located by supplying key values.
Although it is not an essential feature of the model, network databases generally implement the set relationships by means of pointers that directly address the location of a record on disk. This gives excellent retrieval performance, at the expense of operations such as database loading and reorganization.
Relational model
The relational model was introduced in an academic paper by E. F. Codd in 1970 as a way to make database management systems more independent of any particular application. It is a mathematical model defined in terms of predicate logic and set theory.
The products that are generally referred to as relational databases in fact implement a model that is only an approximation to the mathematical model defined by Codd. The data structures in these products are tables, rather than relations: the main differences being that tables can contain duplicate rows, and that the rows (and columns) can be treated as being ordered. The same criticism applies to the SQL language which is the primary interface to these products. There has been considerable controversy, mainly due to Codd himself, as to whether it is correct to describe SQL implementations as "relational": but the fact is that the world does so, and the following description uses the term in its popular sense.
A relational database contains multiple tables, each similar to the one in the "flat" database model. Relationships between tables are not defined explicitly; instead, keys are used to match up rows of data in different tables. A key is a collection of one or more columns in one table whose values match corresponding columns in other tables: for example, an Employee table may contain a column named Location which contains a value that matches the key of a Location table. Any column can be a key, or multiple columns can be grouped together into a single key. It is not necessary to define all the keys in advance; a column can be used as a key even if it was not originally intended to be one.
A key that can be used to uniquely identify a row in a table is called a unique key. Typically one of the unique keys is the preferred way to refer to a row; this is defined as the table's primary key.
A key that has an external, real-world meaning (such as a person's name, a book's ISBN, or a car's serial number) is sometimes called a "natural" key. If no natural key is suitable (think of the many people named Brown), an arbitrary key can be assigned (such as by giving employees ID numbers). In practice, most databases have both generated and natural keys, because generated keys can be used internally to create links between rows that cannot break, while natural keys can be used, less reliably, for searches and for integration with other databases. (For example, records in two independently developed databases could be matched up by social security number, except when the social security numbers are incorrect, missing, or have changed.)
Relational operations
Users (or programs) request data from a relational database by sending it a query that is written in a special language, usually a dialect of SQL. Although SQL was originally intended for end-users, it is much more common for SQL queries to be embedded into software that provides an easier user interface. Many web sites, such as Wikipedia, perform SQL queries when generating pages.
In response to a query, the database returns a result set, which is just a list of rows containing the answers. The simplest query is just to return all the rows from a table, but more often, the rows are filtered in some way to return just the answer wanted.
Often, data from multiple tables are combined into one, by doing a join. Conceptually, this is done by taking all possible combinations of rows (the Cartesian product), and then filtering out everything except the answer. In practice, relational database management systems rewrite ("optimize") queries to perform faster, using a variety of techniques.
There are a number of relational operations in addition to join. These include project (the process of eliminating some of the columns), restrict (the process of eliminating some of the rows), union (a way of combining two tables with similar structures), difference (which lists the rows in one table that are not found in the other), intersect (which lists the rows found in both tables), and product (mentioned above, which combines each row of one table with each row of the other). Depending on which other sources you consult, there are a number of other operators - many of which can be defined in terms of those listed above. These include semi-join, outer operators such as outer join and outer union, and various forms of division. Then there are operators to rename columns, and summarizing or aggregating operators, and if you permit relation values as attributes (RVA - relation-valued attribute), then operators such as group and ungroup. The SELECT statement in SQL serves to handle all of these except for the group and ungroup operators.
The flexibility of relational databases allows programmers to write queries that were not anticipated by the database designers. As a result, relational databases can be used by multiple applications in ways the original designers did not foresee, which is especially important for databases that might be used for decades. This has made the idea and implementation of relational databases very popular with businesses.
Dimensional model
The dimensional model is a specialized adaptation of the relational model used to represent data in data warehouses in a way that data can be easily summarized using OLAP queries. In the dimensional model, a database consists of a single large table of facts that are described using dimensions and measures. A dimension provides the context of a fact (such as who participated, when and where it happened, and its type) and is used in queries to group related facts together. Dimensions tend to be discrete and are often hierarchical; for example, the location might include the building, state, and country. A measure is a quantity describing the fact, such as revenue. It's important that measures can be meaningfully aggregated - for example, the revenue from different locations can be added together.
In an OLAP query, dimensions are chosen and the facts are grouped and added together to create a summary.
The dimensional model is often implemented on top of the relational model using a star schema, consisting of one table containing the facts and surrounding tables containing the dimensions. Particularly complicated dimensions might be represented using multiple tables, resulting in a snowflake schema.
A data warehouse can contain multiple star schemas that share dimension tables, allowing them to be used together. Coming up with a standard set of dimensions is an important part of dimensional modeling.
Object database models
In recent years, the object-oriented paradigm has been applied to database technology, creating a new programming model known as object databases. These databases attempt to bring the database world and the application programming world closer together, in particular by ensuring that the database uses the same type system as the application program. This aims to avoid the overhead (sometimes referred to as the impedance mismatch) of converting information between its representation in the database (for example as rows in tables) and its representation in the application program (typically as objects). At the same time object databases attempt to introduce the key ideas of object programming, such as encapsulation and polymorphism, into the world of databases.
A variety of these ways have been tried for storing objects in a database. Some products have approached the problem from the application programming end, by making the objects manipulated by the program persistent. This also typically requires the addition of some kind of query language, since conventional programming languages do not have the ability to find objects based on their information content. Others have attacked the problem from the database end, by defining an object-oriented data model for the database, and defining a database programming language that allows full programming capabilities as well as traditional query facilities.
Object databases suffered because of a lack of standardization: although standards were defined by ODMG, they were never implemented well enough to ensure interoperability between products. Nevertheless, object databases have been used successfully in many applications: usually specialized applications such as engineering databases or molecular biology databases rather than mainstream commercial data processing. However, object database ideas were picked up by the relational vendors and influenced extensions made to these products and indeed to the SQL language.
Database internals
Indexing
All of these kinds of database can take advantage of indexing to increase their speed, and this technology has advanced tremendously since its early uses in the 1960s and 1970s. The most common kind of index is a sorted list of the contents of some particular table column, with pointers to the row associated with the value. An index allows a set of table rows matching some criterion to be located quickly. Various methods of indexing are commonly used; B-trees, hashes, and linked lists are all common indexing techniques.
Relational DBMSs have the advantage that indexes can be created or dropped without changing existing applications making use of it. The database chooses between many different strategies based on which one it estimates will run the fastest.
Relational DBMSs utilize many different algorithms to compute the result of an SQL statement. The RDBMS will produce a plan of how to execute the query, which is generated by analyzing the run times of the different algorithms and selecting the quickest. Some of the key algorithms that deal with joins are Nested Loops Join, Sort-Merge Join and Hash Join.
Transactions and concurrency
In addition to their data model, most practical databases ("transactional databases") attempt to enforce a database transaction model that has desirable data integrity properties. Ideally, the database software should enforce the ACID rules, summarized here:
* Atomicity: Either all the tasks in a transaction must be done, or none of them. The transaction must be completed, or else it must be undone (rolled back).
* Consistency: Every transaction must preserve the integrity constraints — the declared consistency rules — of the database. It cannot place the data in a contradictory state.
* Isolation: Two simultaneous transactions cannot interfere with one another. Intermediate results within a transaction are not visible to other transactions.
* Durability: Completed transactions cannot be aborted later or their results discarded. They must persist through (for instance) restarts of the DBMS after crashes.
In practice, many DBMS's allow most of these rules to be selectively relaxed for better performance.
Concurrency control is a method used to ensure that transactions are executed in a safe manner and follow the ACID rules. The DBMS must be able to ensure that only serializable, recoverable schedules are allowed, and that no actions of committed transactions are lost while undoing aborted transactions.
Replication
Replication of databases is closely related to transactions. If a database can log its individual actions, it is possible to create a duplicate of the data in real time. The duplicate can be used to improve performance or availability of the whole database system. Common replication concepts include:
* Master/Slave Replication: All write requests are performed on the master and then replicated to the slaves
* Quorum: The result of Read and Write requests is calculated by querying a "majority" of replicas.
* Multimaster: Two or more replicas sync each other via a transaction identifier.
Applications of databases
Databases are used in many applications, spanning virtually the entire range of computer software. Databases are the preferred method of storage for large multiuser applications, where coordination between many users is needed. Even individual users find them convenient, though, and many electronic mail programs and personal organizers are based on standard database technology. Software database drivers are available for most database platforms so that application software can use a common application programming interface (API) to retrieve the information stored in a database. Two commonly used database APIs are JDBC and ODBC
5 comments:
Hi Buddies,
Just joined the gang. Hope to have great time here.
luv
Riya
Hi - I am definitely glad to discover this. Good job!
Excellent description, i see you have put in lot of efforts..logical perfecter@!bose
Invoice templates
Very nice to read such "old" posts!
This topic, like the little that you can see, they feel accompanied us at the beginning
Principled making my oldest mail at vbnetsample.blogspot.com, which seems to be a wonderful forum!
Post a Comment